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Stress from long-range interactions in particulate system
Duan Z. Zhang1, a)

Fluid Dynamics and Solid Mechanics Group, T–3, Theoretical Division, Los Alamos National Laboratory,
Los Alamos, NM 87545, USA

(Dated: 23 April 2020)

In particulate systems, the ensemble average accounting for effects from all particles is expressed as the
expected value related to the nearest particle probability. Using this expression, a stress is defined even
for long-range particle interactions without the divergence difficulty because of the rapid far field decay of
the probability. Similar to the potential part of the virial stress in molecular systems, this stress represents
particle-particle interactions through the surrounding field. As examples, the stresses are calculated for
systems of charged particles and disperse multiphase flows.

I. INTRODUCTION

Long-range particle interactions have been difficult
to study in many fields of physics, especially for the
closure relations of the averaged equations for multi-
phase flows. Numerical simulations for these particu-
late systems mostly rely on the Ewald sum technique.1–4

To numerically study long-range particle-fluid-particle or
particle-field-particle (PFP) interactions, one inevitably
has to involve the computational domain size, hampering
direct analysis of the effects of gradients in the system.
As a result, most numerical simulations2,3,5–7 are limited
to uniform systems.

The main objective of this work is to show that there
is a screening effect related to the inter-particle length
scale and that a PFP stress can be rigorously defined for
particulate systems, when the concept of the average con-
ditional on the nearest particle is used. This screening
is different from the Brinkman screening8 in Stokes flows
or Debye screening9 in charge neutral systems in ther-
modynamic equilibrium. While the nearest particle is an
old concept,10 the starting point of this work is a new
relation derived in the next section between the ensem-
ble average and the average conditional on the nearest
particle. This relation accounts for not only the pair in-
teraction between the nearest neighbors, but also effects
from all other particles, while bypassing the difficulty of
divergent integrals in the study of long-range PFP in-
teractions. This relation and the PFP stress definition
are valid for general particulate systems, such as colloidal
suspensions, charged dust clouds, and galaxies with grav-
itational effects.

From the point of view of the fundamental physics,
the momentum equation is a consequence of spatial sym-
metry, or invariance under spatial translation. Stresses
are parts of the Noether current. The spatial translation
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at each length scale reveals a stress. The spatial trans-
lation at the inter-molecular length scale reveals the po-
tential part of the virial stress.11 In particulate systems,
there are two important length scales, the particle size
and the inter-particle distance. The spatial translation
at the length scale of the particle size leads to the stresses
caused by intra- and inter-phase interactions.12–14 In this
work, the PFP stress is found by a spatial translation at
the length scale of the inter-particle distance as shown in
Section 3 using the newly derived relation between the
ensemble average and the nearest particle statistics in the
next section.

As examples in Section 4, particulate systems are
studied using the nearest particle statistics developed
in this work. The PFP pressure from Coulomb inter-
actions of charged particles is calculated. To show the
relation between this method and the Debye screening,
the Debye-Hückel equation is derived. A more impor-
tant application of this method is the calculation of the
PFP stresses in disperse multiphase flows, which has a
significant consequence for the multiphase flow theory as
discussed in the section.

II. NEAREST PARTICLE STATISTICS AND ENSEMBLE
AVERAGE

Let C , called configuration, be a set of parameters
uniquely describing a particulate system, and P (C ) be
the probability density of configuration C at time t. In
this work, only spatial variations are of concern; there-
fore, we suppress variable t in all the functions, while
the results are applicable to time varying systems. The
particle number density np(x) at location x is defined
as11,12,14–16

np(x) =

ˆ ∑
i

δ(x− ξi)P (C )dC , (1)

where the summation is over all particles in the configu-
ration, and ξi is the position of particle i. Similarly, the
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pair distribution function P2(x,y) is defined as

P2(x,y) =

ˆ ∑
i

∑
j 6=i

δ(x− ξi)δ(y − ξj)P (C )dC . (2)

For a generic particle quantity g, let gi(C ) be its
value on particle i in configuration C . The ensemble
average of this quantity at location x is11,12,14–16

g(x) =
1

np(x)

ˆ ∑
i

δ(x− ξi)gi(C )P (C )dC . (3)

To relate the ensemble average to the nearest particle
statistics, we introduce a function

hij(C ) =
1

Ni

∏
k 6=i,k 6=j

H(|ξk − ξi| − |ξj − ξi|), (4)

where the product is over all particles in the configura-
tion, H is the Heaviside function (with the convention
H(0) = 1), Ni is the number of the nearest particles to
particle i, which are at the equal distance away from par-
ticle i. The function hij(C ) = 1/Ni, if particle j is one
of the nearest neighbors to particle i in configuration C ;
and hij(C ) = 0 otherwise.

Using the property of the δ-function, for any config-
uration C and any particle, say i, one has,

ˆ ∑
j 6=i

δ(y − ξj)hij(C )d3y =
∑
j 6=i

hij(C ) = 1. (5)

The last equality comes from the fact that the summation
over all the particles (j’s) in a configuration encounters
all the nearest particles of particle i. Multiplying the left-
hand side of (5), which is 1, to the right-hand side of (3)
and then exchanging the orders of the integrations, one
finds a major relation of this work relating the ensemble
average to the nearest particle statistics,

np(x)g(x) =

ˆ
gnst(x,y)h2(x,y)P2(x,y)d3y, (6)

where

gnst(x,y) =
1

h2(x,y)P2(x,y)

ˆ ∑
i

δ(x− ξi)gi(C )∑
j 6=i

δ(y − ξj)hij(C )P (C )dC , (7)

with h2(x,y) chosen to be

h2(x,y) =
1

P2(x,y)

ˆ ∑
i

δ(x− ξi)∑
j 6=i

δ(y − ξj)hij(C )P (C )dC , (8)

such that gnst(x,y) = 1, when gi(C ) = 1.
In definitions (7) and (8), the two δ-functions on

the right-hand sides ensure that the contributions to the
integrals only come from the configurations in which po-
sitions x and y are occupied by a pair of particles. Func-
tion hij(C ) further restricts that the contributions are
only from the configurations in which the particle at y is
one of the nearest neighbors to the particle at x. After
division by P2, h2 defined in (8) is the probability of the
particle at y being the nearest neighbor to the particle
at x, given a particle pair at positions x and y.

Similarly, gnst(x,y) defined in (7) is the average of
particle quantity g at x, under the condition that y is
occupied by one of the nearest particles to the particle at
x. The quantity gi(C ) in (7) is the value of g on particle
i, including effects from all particles in configuration C .

Multiplying (8) by P2(x,y), then integrating over y,
after using (5) and (1), one finds

ˆ
h2(x,y)P2(x,y)d3y = np(x). (9)

This relation implies that the integral in (6) over the en-
tire space converges absolutely for any bounded function
gnst(x,y), even it results from long-range PFP interac-
tions. Moreover, h2 decays as exp(−4πnp|y−x|3/3) at a
large distance between the pair of particles in many com-
mon cases;10,17–19 therefore, using the quantity averaged
conditionally on the nearest particle, we are free of the
difficulty of divergent integrals often encountered1,3,15,20

in studies of long-range particle interactions. Although
the mathematical derivations above add no new physics
and do not alter the long-range nature of the particle
interactions, the convergence of (6) facilitates further
mathematical derivations to examine the physics in the
system. One example is the study of the PFP interactions
at the length scale of the inter-particle distance, resulting
in the concept of the PFP stress as shown below.

III. PARTICLE-FIELD-PARTICLE STRESS

Let fnst(x,y) be the average particle-field interac-
tion force on the particle at x conditional on the nearest
particle at y defined using (7) with gi(C ) = fpf,i(C ),
which is the force on particle i applied by its surround-
ing field containing effects from all particles in the con-
figuration. According to (6), the ensemble average of the
particle-field interaction force on a particle at x is

fpf (x) =
1

np(x)

ˆ
F (x, r)d3r, (10)

where r = y − x, and

F (x, r) = fnst(x,y)h2(x,y)P2(x,y), (11)
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is the force density in the six-dimensional (x, r) space.
The probable force

feb(x,y) = fnst(x,y)h2(x,y) (12)

can be considered as the effective binary interaction force
applied by the particle at y to the particle at x, if the
presence of the surrounding field is not explicitly con-
sidered. This force contains both particle-particle and
particle-mean field (although not explicitly considered)
interactions and is similar to the Coulomb force between
a pair of charged particles. Rigorously speaking, the
charged particles only interact with the surrounding field,
not directly with each other, but when the electromag-
netic waves caused by motion of the particles are negli-
gible, one can directly use the Coulomb law to calculate
the forces between them without considering the field ex-
plicitly.

To explore PFP interactions, we introduce the k-th
order moment,

Sk(x) =
1

k!

ˆ
rkF (x, r)d3r, (13)

where rk denotes the dyadic product of k r’s and is a k-th
order tensor, and Sk is a (k + 1)-th order tensor. These
moments contain information about PFP interactions at
the inter-particle length scale `p.

With the change of integration variable r = −r′, for
an integer k ≥ 0, one finds
ˆ
rkF (x, r)d3r = (−1)k

ˆ
rkF (x,−r)d3r. (14)

Using this relation for k = 0, we can rewrite (10) as

np(x)fpf (x) =
1

2

ˆ
[F (x, r) + F (x,−r)]d3r. (15)

The first variable of F (x, r) is the location of the
particle subjected to the force. The length scale associ-
ated with this variable is the length scale L of the physical
problem. The second variable r represents the variation
at the inter-particle length scale `p. For problems that
averaged equations are applicable, L >> `p. Compared
to r, x is a slowly varying variable21 for F (x, r). To
study PFP interactions, we consider forces on different
particles using the Taylor series on the slowly varying
variable x.

F
(
x∓ r

2
,±r

)
= F (x,±r)

+

∞∑
k=1

1

k!

(
∓r
2

)k
: ∇kxF (x,±r), (16)

where the subscript x in ∇x denotes that the gradient
operator only acts on the first (slowly varying) variable

x, ∇kx denotes the dyadic product of k ∇x’s and is a k-th
order tensor operator, and rk : ∇kxF denotes the inner
product between rk and ∇kxF .

Using (16) in (15), and then (14), one finds

np(x)fpf (x)=np(x)fo(x)−∇x·
[ ∞∑
k=1

(−1)k

2k
∇k−1x :Sk

]
, (17)

where

np(x)fo(x)=

ˆ
F
(
x− r2 , r

)
+ F

(
x+ r

2 ,−r
)

2
d3r. (18)

In the second term on the right-hand side of (17), the
orders of the integration and the gradient operators have
been exchanged. This is legitimate because ∇x acts on x,
while the integration variable is r. The quantity inside
the square brackets is a tensor with the dimension of
stress, but it is not a stress. To see that, let us decompose
F into the symmetric part,

F s(x, r) =
1

2
[F (x, r) + F (x,−r)], (19)

representing the pair-field interaction at position x, and
the antisymmetric part,

F a(x, r) =
1

2
[F (x, r)− F (x,−r)], (20)

representing the PFP interaction at the position. Clearly,

F s(x, r) = F s(x,−r), F a(x, r) = −F a(x,−r). (21)

Since a stress represents force transmission through a sur-
face, let us consider surface element dA between parti-
cles at x and x + r with unit normal r̂ = r/r. The
force caused by a stress, say σ, on the surface element is
σ · r̂dA, which changes its sign when the distance vec-
tor r between the particles does. If a force component
between the pair contributes to a stress, the force compo-
nent must also change its sign. Hence, only the antisym-
metric part F a of F can contribute to a stress. Using
(14) or (21), one can show that the antisymmetric part
F a contributes to and only to Sk with odd k’s; and the
symmetric part F s contributes to and only to Sk with
even k’s. With these properties of Sk, we now define the
PFP stress Σpfp as

θp(x)Σpfp(x) =

∞∑
odd k>0

1

2k
∇k−1 : Sk(x), (22)

and the pseudo-stress T as

θp(x)T (x) =

∞∑
even k>0

1

2k
∇k−1 : Sk(x). (23)
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The volume fraction θp is multiplied with Σpfp and T in
these definitions to serve as a reminder that θpΣpfp and
θpT go to zero as the particle volume fraction θp does,
although not necessarily linearly with θp.

With these definitions, the particle-field interaction
force density becomes

np(x)fpf (x)=np(x)f `(x) +∇ · [θp(x)Σpfp(x)], (24)

where f ` is the local force defined as

np(x)f `(x)=np(x)fo(x)−∇ · [θp(x)T (x)]. (25)

To understand the physical meaning of f `, let us focus on
the first term, since the second term is of order (`p/L)2.
Using (11) and property P2(x,y) = P2(y,x) from defi-
nition (2), we rewrite (18) as

np(x)fo(x)=

ˆ
fpr(x, r)P2

(
x− r

2
,x+

r

2

)
d3r, (26)

where

fpr(x, r)=
1

2

[
feb
(
x− r

2
,x+

r

2

)
+feb

(
x+

r

2
,x− r

2

)]
. (27)

The first term in (27) is the effective binary force on the
particle at x − r2 from the particle at x + r

2 ; and the
second term is the force the other way around. The force
fpr in (27) represents the average force per particle due
to the interaction between the pair and the surrounding
field. After integrating over all particle pairs around x,
force fo is the average pair-field interaction force per
particle. However, the force fpr is on particles at x ±
r/2, not on a particle at x. The effect of this position
difference to the local force f ` is of order (`p/L)2 and
is corrected by the subtraction of the pseudo-stress in
(25), which only involves the symmetric part of F (x, r),
representing the pair-field interaction at the location.

Such calculated f `(x) is the pair-field force per par-
ticle at x. The total particle-field force fpf on a sin-
gle particle at x needs to include intra-pair interactions,
which is the divergence of the PFP stress. To illustrate
the physical meaning of the PFP stress, we only consider
the first term, S1 in (22).

Let dA be a surface element centered at x with the
unit normal n as shown in Fig. 1. For a given distance
vector r, inside the cylinder are the locations (z’s) of
particles, such that another particle at distance r away
from a particle (at z) in the cylinder is on the other side
of (above) the surface element dA. The volume of the
cylinder is dVz = n·rdA. The cylinder contains npn·rdA
probable particles. The probable number of particle pairs
with a particle in the cylinder, and the other particle
in the volume element d3r at distance r away from the
particle at z in the cylinder is n · rdAP2(z, z + r)d3r.

x

n

dA

r

z

FIG. 1. Illustration of PFP interactions across a surface ele-
ment dA containing x. For a given vector r, the cylinder is
constructed to have its side parallel to r with length r.

Particles in these pairs are on the different sides of the
surface element dA. Each such pair transmits a probable
force feb(z, z + r) across the surface element dA. By
noting F (z, r) = feb(z, z+r)P2(z, z+r) from (11) and
(12), after integrating over all such cylinders represented
by r’s, the integral

τdA = dAn ·
ˆ
n·r>0

rF (z, r)d3r (28)

is the total effective particle interaction force applied
across the surface area dA by the particles on the posi-
tive (n · r > 0, above the plane) side to the particles on
the negative side (n · r < 0) of the surface element dA,
and τ is the traction force per unit area. Similar cal-
culations can be performed for the particle forces in the
reverse direction to yield the same expression as (28), but
with the integration region changed to n · r < 0. Com-
bining these results from both sides, within an error of
O(`p/L)2 on the stress, resulting an O(`p/L)3 error on
the force as in (24), one can approximate z with x and
finds τdA = dAn · [θp(x)Σpfp(x)], with θp(x)Σpfp(x)

calculated in (22).

IV. EXAMPLES

We now use examples to show calculations of this
PFP stress and applications of the nearest particle statis-
tics.

A. Systems with electric charges

Let us consider a system of charged spherical parti-
cles. Each particle contains the same amount of charge q
and has a radius a. For a particle at x, the force on the
particle conditional on the nearest particle at y is

fnst(x,y) = − q2

4πεr2
r̂ + qE0(x) (29)
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where ε is the electric permittivity, r = y − x is the dis-
tance vector between the particles, r̂ = r/r, and E0(x)

is the electric field at x if the particle at y is absent.
The particle-field-particle stress defined in (22) can be
calculated as

θpΣpfp =
1

2

ˆ
rfnsth2P2d

3r = −
ˆ

q2

8πεr
r̂r̂h2P2d

3r, (30)

because the second term in (29) integrates to zero. This
integral converges for any particle distribution as dis-
cussed above. By assuming uniform and isotropic parti-
cle distribution and a small particle volume fraction, we
have15,18,19 h2 ≈ exp[−4πnp(r

3− (2a)3)/3] and P2 ≈ n2p.
The integration can be performed analytically to find

θpΣpfp ≈ −
ρ2a2θ

4/3
p

18ε
e8θpΓinc

(
2

3
, 8θp

)
I, (31)

where ρ = q/(4πa3/3) is the average charge density in
the particle, Γinc is the incomplete Γ-function, and I is
the identity tensor. This stress is negative indicating the
pressure in the system causing the tendency of expansion.

To show the relationship between the nearest par-
ticle statistics and the Debye screening, we consider a
system containing N species of charged point particles
subjected to a weak electric potential φ << kbT/q, where
kb is the Boltzmann constant, T is the absolute tempera-
ture, and q is the typical charge on a particle. The system
is otherwise statistically homogeneous and isotropic.

For multi-species systems, we apply the nearest par-
ticle statistics to one of the species, say species, s. Since
the electric field E is not a particle quantity, but defined
everywhere in space, relation (6) cannot be used directly.
A similar relation (eq. (56) in the Appendix) for the con-
tinuous phase quantities can be derived. The ensemble
average of E can be written as

〈E〉(x) =

ˆ
〈E〉s,nst(x, r)P cs,nst(x, r)d3r, (32)

where P cs,nst(x, r) (= P cnst(x+ r|x) in (56)) is the prob-
ability density of finding the nearest species s particle
to x at x+ r, and 〈E〉s,nst(x, r) (= 〈qc〉nst(x,x+ r) in
(56)) is the averaged electric field at x conditional on the
nearest species s particle at the distance r away. After
applying the Gauss law (by using (60) in the Appendix
with qc = E and χc = θc = 1, noting the homogeneity
of the system, and neglecting the last term representing
multi-particle interactions), correct to the first order in
the species concentration,22 we have

ε∇ · 〈E〉s,nst(x, r)=

N∑
k=1

qkn
k
s,nst(x, r), (33)

where nks,nst(x, r) is the number density of species k par-
ticles at x, under the condition that the nearest species
s particle at x+ r.

Let 〈φ〉s,nst be the potential for 〈E〉s,nst, such that
〈E〉s,nst = −∇〈φ〉s,nst. Under the assumption of thermo-
dynamic equilibrium and small electric potential φ <<

kbT/q, we have the Boltzmann distribution

nks,nst=nk0 exp

(
−qk〈φ〉s,nst

kbT

)
≈nk0

(
1− qk〈φ〉s,nst

kbT

)
, (34)

where nk0 is the mean number density of species k parti-
cles. Using this relation in (33) and noting

∑N
k=1 n

k
0qk =

0 for charge neutrality, one finds

∇2〈φ〉s,nst −
〈φ〉s,nst
`2d

= 0, (35)

where `d =
√
εkbT/

∑N
i=1(n0i q

2
i ) is the Debye length.

Equation (35) is known as the Debye-Hückel equation,
which has a fundamental solution22

〈φ〉s,nst =
1

4π|x|
e−|x|/`d . (36)

The average potential conditional on the nearest particle
is screened.

Taking the divergence of (32), using (33), noting
∇Ps,nst(x, r) = 0 for a homogeneous system, one finds

ε∇ · 〈E〉(x) =

N∑
k=1

qkn
k(x), (37)

where

nk(x) =

ˆ
nks,nst(x, r)Ps,nst(x, r)d3r, (38)

is the number density of species k particles. Using the
Boltzmann distribution similar to (34) with potential 〈φ〉
for the average electric field (〈E〉 = −∇〈φ〉), we find the
Debye-Hückel equation for the ensemble average of the
potential,

∇2〈φ〉(x)− 〈φ〉(x)/`2d = 0. (39)

Under the assumptions of thermodynamic equilibrium
and charge neutrality, both the ensemble averaged po-
tential and the potential conditionally averaged on the
nearest particle are screened with the Debye length `d.
Relation (37) can also be obtained by directly integrat-
ing (60) over r, resulting in relation [2.13] of Zhang and
Prosperetti,23 based on the original definition of the en-
semble average. The fact that we can obtain it both
ways confirms the consistency between the nearest par-
ticle statistics introduced here and the original ensemble
average.



6

This example shows that, as a mathematical tool,
the nearest particle statistics can be used to obtain the
Debye screening effect, while the ultimate reason for ex-
istence of the Debye length `d is the physics of thermo-
dynamic equilibrium and charge neutrality.

Similar to this system of charged particles, by study-
ing the averaged equation for the average velocity con-
ditional on the nearest particle, one can also obtain the
Brinkman screening for a Stokes flow passing a dilute
array of fixed particles.

B. Disperse multiphase flows

We now use this method to study a more difficult
problem, the momentum exchange in a two-phase flow.
For disperse multiphase flows, the continuous phase is
always described using the Eulerian method. Both La-
grangian and Eulerian methods have been employed to
describe the disperse phase.7,16,24–27 The drag and the
added mass force are the best known phase interaction
forces in multiphase flows. Although volume fraction
dependent force models have been used28–30 to calcu-
late these forces, the effects of particle distributions and
spatial gradients, with the exception for the lift force,
have not been systematically considered in force mod-
els. Multiphase flow theory with such force models alone
are known to be insufficient and inconsistent.27,31 For
instance, the well-known concept of the effective viscos-
ity cannot be obtained from models containing only these
forces. Furthermore, such models are not hyperbolic,32,33

causing numerical results to diverge as the mesh refines in
numerical calculations.34,35 Detailed studies12,15,23,36,37

show that there is a system of important stresses or mo-
mentum fluxes. The hyperbolicity is related to these
stresses.32,37 The phase interaction represented by the
PFP stress studied in this work belongs to the cate-
gory often called the three-way couplings resulting from
particle-particle interactions mediated by the fluid.31

To consider such couplings in a Lagrangian descrip-
tion of the disperse phase, the phase interaction force
needs to be sensitive to the positions of many surround-
ing particles.27 In an Eulerian description, since the force
is not for an individual particle, it should be a function
of the probability distribution of the surrounding parti-
cles. From this point of view, the force model for an
Eulerian-Eulerian description should be easier to achieve
than the forces models in an Eulerian-Lagrangian de-
scription. The PFP stress defined in (22) can be con-
sidered as a correlation between the phase interaction
forces and relative particle positions, containing the in-
formation of the particle distribution. The forces on the
particles come from several physical origins, as for the

drag, added mass force, and the Basset force. One can
use definition (22) to study the corresponding stresses
from these forces. In the following, as the first example
in the multiphase flow, we choose to study the stress cor-
responding to the Stokes drag to gain insights of the phys-
ical meanings and mathematical properties. As pointed
out by one of the reviewers, the most impactful applica-
tion of this method will be the numerical calculation of
the PFP stress using particle-resolved simulations. The
examples provided here only serve the purpose of estab-
lishing the concept of this PFP stress and to understand
its basic properties.

For a statistically uniform and isotropic particle dis-
tribution in a Stokes flow, the average force on the parti-
cle at x with the nearest particle at distance r away can
be written as

fnst(x,y) = A(θp, r) · vr(x) +B(θp, r) · vr(y), (40)

where A and B are the resistance tensors38 even in vari-
able r, and vr(x) and vr(y) are the average relative
velocities between the particle and the fluid phases at
locations x and y = x+ r. Near x, we can write

vr(y)=vr(x)+r·∇vr(x)+
rr

2
:∇∇vr(x)+O(̀ p/L)3. (41)

Substituting (41) into (40) and then into (22), (23) and
(25), with an error of O(`p/L)3, we find

θp(x)Σpfp(x) =
1

2

ˆ
rfnsth2P2d

3r

=
1

2

ˆ
rB(θp, r)rh2P2d

3r :∇vr(x), (42)

and

npf ` =

ˆ
[A(θp, r) +B(θp, r)] · vr(x)h2P2d

3r. (43)

In this force the terms involving ∇∇vr(x) are canceled
by the pseudo-stress in (25). The last integral in (42) is
a fourth order with the dimension of viscosity.

For the leading order in the particle volume fraction
θp, the effect of the particle interaction can be studied by
considering a pair of particles with radii a in a pure fluid,
because the probability of having a third particle nearby
is of order θ3p and negligible. In this case, the resistance
tensors can be approximated as

A(0, r) = −6πµaI, B(0, r) = 6πµa
3a

4r

(
I+

r

r

r

r

)
. (44)

These are only the leading order (in a/r) approxima-
tions and can be used to obtain the leading order ap-
proximation in θp for the local force f ` and the PFP
stress. With higher order terms (in a/r), and consider-
ing the fluid velocity induced by particle motions, one
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can also use the method described in this work to obtain
the first order approximation of drag in the particle vol-
ume fraction. However, that study is beyond the scope
of this work and will be reported elsewhere. Using15,18,19

h2 ≈ exp[−4πnp(r
3 − (2a)3)/3] and P2 ≈ n2p, one finds

f ` ≈ −6πµavr, and

θpΣpfp≈µpfp
{

(∇vr)T+
1

5

[
∇·vrI+∇vr+(∇vr)T

]}
, (45)

where

µpfp =
9

16
Γ(4/3)θ2/3p µ, (46)

is the PFP viscosity with µ being the fluid viscosity and
Γ(·) being the Γ-function. This PFP viscosity should not
be confused with the effective viscosity for a particle sus-
pension. The PFP stress associated with this viscosity is
a term in the phase interaction force density in (24) that
appears in the averaged momentum equations for the
fluid and particle phases in equal magnitudes but oppo-
site signs. By summing these two momentum equations
to obtain the mixture momentum equation, the force den-
sities, including the PFP stress terms, cancel, while the
effective viscosity is a concept for the mixture.15,23

As another example of the disperse two-phase flow,
we study a steady uniform potential flow. In this case,
the force fnst is a function of the relative velocity vr be-
tween the phases. We can then write fnst = f(vr, r).
If we now reverse both the relative velocity vr and the
relative particle position r, by spatial symmetry, we have
f(vr, r) = −f(−vr,−r). This relation can also be ob-
tained by rotation of the coordinates. Let S be a plane
containing both vectors vr and r, and ŝ be the unit nor-
mal of S. The above identity can be obtained by 180◦

rotation about ŝ. Furthermore, for potential flows, when
the velocity is reversed, the force remains unchanged, or
f(−vr,−r) = f(vr,−r). Using these relations, we have

fnst(r) = f(vr, r) = −f(−vr,−r)

= −f(vr,−r) = −fnst(−r). (47)

With this relation, P2(x,x + r) = P2(x + r,x), and
definitions (18) and (23), we find fo = 0 and T = 0 for
potential flows with uniform relative phase velocities and
uniform and isotropic particle distributions. As a direct
consequence of this, the local phase interaction force f ` =

0. In a potential flow, since force fnst is proportional to
the square of the relative velocity between the phases,
the stress must then be a tensor also proportional to the
velocity squared. The only such tensor with the correct
dimension possible is

θpΣpfp = ρf [C1(θp)(vr · vr)I + C2(θp)vrvr], (48)

where ρf is the fluid density, C1 and C2 are the coeffi-
cients depending on the particle volume fraction to be
determined numerically.

This example shows importance of the PFP stress.
Suppose one has numerical simulations of potential flows
using periodic domain for uniform particle distributions
and then uses the numerical results to calculate the phase
interaction force and finds that the result is zero. With-
out the concept of the PFP stress, one would conclude
that in a potential flow the presence of particles has
no effect on the averaged momentum equations, which
is correct in cases of uniform systems, but not so for
non-uniform cases. The PFP stress (48) represents the
Bernoulli effect. For a cloud of particles, with the vol-
ume fraction gradient near the edge, the gradient of the
PFP stress attracts particles into the cloud and repels the
fluid phase. Furthermore, the PFP stress is not isotropic
causing the deformation of the cloud.

V. DISCUSSIONS AND CONCLUSIONS

For a uniform system, as in most of today’s nu-
merical simulations, the PFP stress can be calculated
as follows. Let Nen be the number of numerical sim-
ulations performed. By replacing

´
(·)P (C )dC with

limNen→∞
1

Nen

∑Nen

C=1(·) in (7) according to the definition
of ensemble average, the volume average of the stress can
be calculated as

Σpfp = lim
Nen→∞

1

Nen

Nen∑
C=1

ΣC
pfp, (49)

where

ΣC
pfp =

1

2Vp

Np∑
i=1

1

Ni

Ni∑
ji=1

(ξji − ξi)f i, (50)

is the volume averaged stress in configuration C , with Vp
being the total particle volume in the configuration, Np
the number of particles in C , Ni the number of the near-
est particles of particle i, f i the particle-field interaction
force on particle i, ξi the position of particle i, and ξji the
position of the ji-th nearest particle to particle i. In most
of the cases with moving (or randomly placed) particles,
each particle will have one nearest neighbor (Ni = 1).
Furthermore, for steady flows, time averaging can also
be performed to enhance the convergence.

Since calculations of the local force and the PFP
stress are based on the nearest particle probability, which
decays rapidly at far field, one can also perform sim-
ulations with local gradients in a periodic domain to
study effects of gradients in the particulate system. If
the length scale associated with the gradient is much
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greater than the inter-particle distance and smaller than
the size of the computational domain, the force and the
stress models developed based on such simulations are
then valid for general system.

In conclusion, instead of providing a new numeri-
cal method to simulate long-range particle interactions,
in this work the difficulty associated with mathemati-
cal analysis of long-range particle interaction is bypassed
by establishing the relation between the ensemble aver-
age and the average conditional on the nearest neighbor.
Using this relation, a particle-fluid-particle or particle-
field-particle (PFP) stress is defined. By decomposing
the particle-field interaction force into the local force f `
and the divergence of the PFP stress, one can extract ad-
ditional physics from numerical results to develop models
for statistically heterogeneous particulate systems.
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APPENDIX – AVERAGE FOR THE CONTINUOUS PHASE

In Section 2, for particle quantities, we have derived
the relation between the ensemble average and the aver-
age conditional on the nearest particle. In this Appendix,
we extend the derivation to the quantities pertaining to
the continuous phase. Similar to (4), for a position x we
define

hi(x,C ) =
1

Nx(x,C )

∏
j

H(|ξj − x| − |ξi − x|). (51)

where H is the Heaviside function (with the convention
H(0) = 1), and

Nx(x,C ) =
∑
i

∏
j

H(|ξj − x| − |ξi − x|) ≥ 1, (52)

is the number of the nearest particles to position x.
Using the property of the δ-function, for any config-

uration C and position x, we haveˆ ∑
i

hi(x,C )δ(ξi − y)d3y =
∑
i

hi(x,C ) = 1. (53)

The volume fraction of the continuous phase is12,16

θc(x) =

ˆ
χc(x,C )P (C )dC , (54)

where χc is the phase indicator function defined as:
χc(x,C ) = 1, if x is in the continuous phase in con-
figuration C , and χc(x,C ) = 0, otherwise. For a generic
continuous phase quantity qc(x,C ) at position x, its en-
semble average is defined as12,16

〈qc〉(x) =
1

θc(x)

ˆ
χc(x,C )qc(x,C )P (C )dC . (55)

Multiplying the left-hand side of (53) to the right-
hand side of (55) and then exchanging the orders of the
integrations, similar to (6) one finds

〈qc〉(x) =

ˆ
〈qc〉nst(x,y)P cnst(y|x)d3y, (56)

where

〈qc〉nst(x,y) =
1

θc(x)P cnst(y|x)

ˆ
qc(x,C )χc(x,C )∑

i

hi(x,F )δ(ξi − y)P (C )dC , (57)

is the average of the continuous phase quantity qc at x
under the condition that position x is in the continuous
phase, while position y is occupied by the center of the
nearest particle.

P cnst(y|x) =
1

θc(x)

ˆ
χc(x,C )∑

i=1

hi(x,F )δ(ξi − y)P (C )dC , (58)

is the probability density of finding the nearest particle
to x at y conditional on x being a point in the con-
tinuous phase. Using (53) and (54), one finds that this
probability density normalizes to

ˆ
P cnst(y|x)d3y = 1. (59)

For a constant r, the gradient of 〈qc〉nst(x,x + r)

can be calculated as

θc(x)P cnst(x+ r|x)∇〈qc〉nst(x,x+ r)

=θc(x)P cnst(x+ r|x)〈∇qc〉(x,x+ r)

+[〈qc〉(x)− 〈qc〉nst(x,x+ r)]∇[θc(x)P cnst(x+ r|x)]

+

ˆ
[qc(x,F )− 〈qc〉(x)]

∑
i

hi(x,F )δ(ξi − x− r)

∇χc(x,C )P (C )dC

+

ˆ
[qc(x,F )− 〈qc〉(x)]χc(x,C )∑
i

∇[hi(x,C )δ(ξi − x− r)]P (C )dC , (60)
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in which

∇[hi(x,F )δ(ξi − x− r)] = δ(ξi − x− r)∑
k

(r̂ − r̂k)δ(rk − r)
∏
j 6=k

H(rj − r), (61)

with rk = ξk − x, r̂ = r/r and r̂k = rk/rk. Noting that
in (61), the term with k = i contributes nothing because
ri = r. For (61) to be nonzero, a particle other than
the one with index i (at x+ r) has to be at the distance
r = |r| away from x; therefore, the last term in (60) is
caused by multi-particle interactions.
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